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SUMMARY

This paper describes the design and simulator evaluation of an automation tool for assisting terminal
radar approach controllers in sequencing and spacing traffic onto the final approach course. The automa-
tion tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories
for arrivals as well as sequencing information on the controller’s radar display. The main functional
elements of FAST are a scheduler that schedules and sequences the traffic, a 4D trajectory synthesizer
that generates the advisories, and a graphical interface that displays the information to the controller.
FAST has been implemented on a high performance workstation. It can be operated as a standalone in
the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with
automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experi-
enced TRACON controllers in a real-time air traffic control simulation. Simulation results summarized
in the paper show that FAST significantly reduced controller workload and demonstrated a potential for
an increase in landing rate.

INTRODUCTION

Increasing delays and airspace congestion at major airports are among the most critical problems
facing the air transportation system. It is widely recognized that the introduction of advanced automation
techniques in air traffic control (ATC) offers a high potential for alleviating these problems. This paper
describes the design of an automation system for assisting controllers in the management of arrival
traffic in the terminal area.

The first innovative design of an automation system for terminal area ATC was developed in the late
1960s (ref. 1). This system, the progenitor of all automation aids, provided speed and heading advisories
to help controllers increase spacing accuracy on final approach. Although traffic tests of the system
showed an increase in landing rate, controllers found their workload was increased and they rejected the
system. A retrospective examination of the concept suggests that the design was sound but its effective-
ness was limited by the technology of the period, especially its lack of an adequate controller interface.
A recent fast time simulation study confirmed the potential for increasing landing rate with the assis-
tance of such automation aids (ref. 2).

Recent research at NASA Ames has resulted in the design and laboratory implementation of an inte-
grated Center-TRACON Automation System for the efficient control of arrival traffic. The elements
comprising this system are the Traffic Management Advisor (TMA) and the Descent Advisor (DA) to be
used in Air Route Traffic Control Centers (ARTCC or Center) and the Final Approach Spacing Tool
(FAST) to be used in Terminal Radar Approach Control (TRACON) Facilities (refs. 3, 4). The advi-
sories generated by these tools assist controllers in handling aircraft arrivals starting at about 200 n.mi.
(45 min) from the airport and continuing to the final approach fix. During the last two years, the three
elements of this system have been evaluated by Center and TRACON controllers in several real-time
simulations.



This paper begins with an overview of the Center-TRACON Automation System tools (i.e., the
TMA, DA, and FAST). Then the paper focuses on the design and evaluation of FAST, the main function
of which is to provide speed and turn advisories that help controllers achieve an accurately spaced flow
of traffic on final approach. The paper concludes with a description of results from a recent real-time
simulation which evaluated the acceptability of FAST to TRACON controllers and its effect on landing
rate.

OVERVIEW OF AUTOMATION SYSTEM CONCEPT

The Center-TRACON Automation System consists of three sets of integrated tools, referred to as
TMA, DA, and FAST. TMA is a tool for the Center whose primary function is to plan the most efficient
landing times. The scheduling algorithms implemented in TMA generate landing sequences that mini-
mize overall system delay. The TMA plans these times such that traffic approaching from different
directions will merge on the final approach without conflicts and with optimal spacing. The principal
function of the DA is to assist the Center controllers in implementing the arrival schedules generated by
the TMA. It provides descent speed profiles, top of descent points, and turn advisories that help con-
trollers deliver aircraft at feeder gates into the TRACON at specified times. DA also provides conflict
detection and resolution advisories, together with an interactive graphical interface. A detailed descrip-
tion of the TMA and DA is given in reference 3.

FAST provides tools to assist TRACON controllers in keeping aircraft on precise time controlled
trajectories from the feeder gates (the entry point into the TRACON) to the final approach fix. Although
primarily based on the same set of scheduling and 4D trajectory algorithms as the Center TMA and DA,
it also has several capabilities designed specifically to handle the unique problems occurring in the
TRACON. A review of the principal design features of FAST can be found in reference 4; they are
summarized in the following sections.

FINAL APPROACH SPACING TOOL (FAST)

The Final Approach Spacing Tool consists of three major software elements: a scheduler, a 4D tra-
jectory generator, and a graphical advisory interface, each of which is briefly described below.

Scheduler

The function of the Scheduler incorporated in FAST is to generate optimally spaced landing times
for arrival aircraft. These landing times are subsequently fed as input to the 4D trajectory generator in
FAST, which computes appropriate heading and speed advisories that help the controller keep the air-
craft on time. The scheduling algorithm in FAST is essentially identical to the one in the Center TMA.
The primary difference between them involves the choice of the Scheduling and Freeze Horizons. These
time parameters determine when arrivals are initially assigned landing times and when the landing times
are frozen. Appropriate values for these parameters were determined experimentally and are typically set
at 11 min and 8 min to touchdown, respectively.



The operation of the Scheduler, described in references 3 and § is briefly reviewed here. The primary
inputs to the Scheduler are periodically updated estimated times of arrival (ETAs) for all aircraft that are
being tracked by the terminal area radar systems. When the ETA of a new arrival first falls within the
Scheduling Window, which is defined as the time interval between the Scheduling and Freeze Horizons,
the Scheduler begins generating scheduled times of arrival (STAs). The Scheduler first attempts to place
a new arrival at a time identical to its ETA on the runway. If such a choice of STA creates a spacing vio-
lation with previously scheduled aircraft, the Scheduler assigns the closest available time that meets the
minimum allowed spacing distance on final approach. The minimum time separations used by the
Scheduler are derived from minimum separation distances specified by FAA regulations. The minimum
spacing distances depend on the weight classes of the aircraft in the landing sequence and can be repre-
sented in a matrix of separation distances (n.mi.) as given in table 1. As explained in reference 6, this
matrix of distances is converted to a corresponding matrix of time separations by incorporating knowl-
edge of final approach speeds. Furthermore, buffers on the order of 10 to 20 sec are added to these mini-
mum time separations in order to protect against unavoidable errors in the ability to control landing
times using the FAST advisories.

The magnitude of the differences between the STAs and the initial ETAs generated by the Scheduler
depends both on the orderliness of the arrival stream and on the excess of the total arrival flow over the
maximum landing rate. If the arrivals into the TRACON airspace are controlled by the DA and TMA,
they will arrive at the gates with only small time errors and the flow rate will match the runway accep-
tance rate. In that case the Scheduler in FAST will make only minor changes in the STAs originally cal-
culated by the Center TMA. These changes will correct the small time error accumulated during the
descent and the transition from the Center into the TRACON. Most of the time, therefore, the Scheduler
will be able to preserve the optimal landing sequence originally calculated by the Center TMA.

If the Center automation tools, DA and TMA, are not in operation, the flow into the TRACON
during rush periods will be strongly bunched and may exceed the maximum runway acceptance rate for
a period of time. Because of maneuver airspace restrictions and other factors, a TRACON Scheduler has
less freedom to optimize the arrival sequence than the Center Scheduler, and therefore cannot be as
effective in reducing delays. However, the FAST scheduler is designed to handle such difficult flow
conditions in the best possible way. It will generate landing sequences and STAs that minimize delays
subject to operational constraints. Under excess traffic load, the STAs generated by the Scheduler will
absorb delays in the TRACON by holding or path stretching.

An important function built into the Scheduler is the capability for handling missed approaches and
popup traffic. With these functions, the Scheduler opens up a time slot where such aircraft can be rein-
serted into the arrival sequence. Under saturated traffic conditions the insertion of an extra slot will,
inevitably, introduce delays for aircraft that follow the inserted aircraft. The rescheduling function
assists the controller in finding a slot in the arrival sequence that will least disrupt the overall traffic
flow.

Four-Dimensional Trajectory Generator

The FAST descent trajectory synthesis algorithm is a modified version of the Center DA algorithm.
A detailed description of the algorithm is given in reference 3. Similar to the Center DA, it employs a



second-order Runge-Kutta forward integration scheme to synthesize a path to the runway based on stan-
dard TRACON operations, aircraft state and type, and wind speed and direction.

Upon arrival into TRACON airspace, the FAST 4D Trajectory Generator predicts the arrival time of
an aircraft at the final approach fix (outer marker) based on its current position, altitude, speed, and
heading. The prediction is based on a set of standard arrival routes, air speed deceleration schedules, and
altitude profiles that conform to standard operations at a given TRACON. The current implementation of
FAST is based on Denver TRACON operations for arrivals to Stapleton International Airport. Next, the
FAST 4D Trajectory Generator computes a range of arrival times based on the aircraft speed envelope
and allowable path extension. These predicted trajectories are updated every 5 sec. If the STA and ETA
are the same, the aircraft is maintained on its present nominal path, altitude, and speed profile to the
runway. If the ETA shows the aircraft to be early, the FAST 4D Trajectory Generator will synthesize a
descent trajectory that attempts to eliminate the time error by first decreasing the aircraft airspeed and
then, if necessary, extending the path distance to the runway. If the ETA shows the aircraft to be late, the
controller is advised to have the aircraft maintain higher speeds or shorten its path to the runway by uti-
lizing the Horizontal Guidance Modes that will be described next.

Construction of the horizontal route always begins at the current position and heading of the aircraft
and terminates at the final approach fix. The current position need not be on a standard path. The con-
troller may vector the aircraft anywhere in the TRACON arrival airspace and a horizontal route will be
synthesized based on either a route-intercept (RD) procedure or a waypoint capture (WC) procedure
(refs. 3, 4).

Route intercept operates in conjunction with a set of standard or nominal arrival routes converging
on the final approach course to the runway. The routes comprising the nominal arrival path from the
north to Rwy 26L at Denver’s Stapleton International Airport are the final approach course extending
15 n.mi. beyond the outer marker (Altur), a base leg positioned 5.5 n.mi. from the outer marker and
extending 15 n.mi. north from and perpendicular to the final approach course, and a downwind leg posi-
tioned 5 n.mi. north of and parallel to the final approach course (fig. 1). Each route has a corridor width
of +1 n.mi. relative to its center line.

As an aircraft enters the TRACON airspace from one of the feeder gates (Drako or Keann) the FAST
trajectory synthesis algorithm puts the aircraft into a free vector mode. In this mode, the algorithm seeks
an interception of one of the defined route segments by extending the instantaneous heading vector.
From the first point of interception, the algorithm completes the path by following along the nominal
route to the final approach fix. After the aircraft has captured the downwind leg, the horizontal synthesis
computes a new RI of the base leg. Similarly, once the aircraft has intercepted the base leg, a new RI of
the final approach course is computed. The path to the runway is recomputed approximately every 5 sec
based on the current position and heading. This free-vector mode with RI logic allows the controller the
freedom to vector aircraft anywhere in the arrival airspace and still maintain a highly accurate estimate
of arrival time as long as the aircraft is heading for a standard route segment.

The horizontal path synthesized by the waypoint capture (WC) mode consists of an initial circular
arc starting at the current position and course followed by a straight-line segment leading directly to a
designated capture waypoint, and ending with a circular arc turn intercepting the route containing the
capture waypoint. The geometry of this construction is illustrated in figure 2. The algorithm determines

4

o



the radius of the turn from the airspeed, wind speed, and maximum allowable bank angle. Furthermore,
the direction of the turn toward the capture waypoint is chosen so that the total length of the path is
minimized. In order to compensate for computational delays and to allow for controller response time,
the algorithm also moves the start of the turn at each computational cycle a distance equivalent to 10 sec
of flight time ahead of the current aircraft position. As in other trajectory synthesis modes, the predictive
algorithm refreshes the WC profile in a 5-sec cycle using updated aircraft state information. The WC
mode can be manually selected by the controller for special situations such as missed approach guid-
ance. It is also selected automatically by FAST if the RI mode fails to generate a 4D trajectory under
certain circumstances.

Graphical Advisory Interface

Similar to the Center DA, a vertical time line is used to display the current STA and ETA for all air-
craft in, or expected to arrive in, the TRACON airspace.

The right side of the time line displays the current ETA for each aircraft in green. The left side of the
time line displays the current STA for each aircraft in blue if arriving from the West and white if arriv-
ing from the East. This increases the speed with which the controller can correlate an aircraft’s location
on the time line with its location on the plan view display (PVD). If the STA and ETA are different
during the aircraft’s flight in the TRACON, FAST will provide speed advisories and heading vectors
required for the aircraft to meet the STA. As the advisories are displayed, the ETA on the time line will
adjust itself to reflect the effect of each update.

When FAST determines that a speed adjustment is necessary at a given point and the aircraft is
within 5 n.mi. of that point, the advised Indicated Airspeed (IAS) is displayed on the aircraft data tag
below the ground speed in orange. The use of color on the tag alerts the controller that an advisory is
pending. Having the advised speed on the tag allows the controller to maintain his concentration on the
aircraft position. In addition, the point along the current predicted path where the speed adjustment
should be issued is highlighted with an orange marker to correlate with the orange speed advisory on the
data tag. The 5-n.mi. advance notice and spatial display of the position at which the speed adjustment
should occur allows the controller to plan ahead for its issuance.

Another common technique used by TRACON controllers to delay or advance an aircraft is to
extend or compress the downwind leg of the approach path or vary the intercept of the final approach
course. Thus, when an aircraft arrives from the West to land on Rwy 26L and is within 5 n.mi. of its
advised turn to base or turn to final, the data block is colored blue and a blue turn arc appears at the
position where the instruction to turn should be issued. Once the aircraft has completed the base or final
turn, the aircraft color reverts back to green, and the turn arc for that aircraft disappears. Similarly, air-
craft arriving from the East are color-coded white for base and final turn advisories. The positions of the
base and final turn advisories vary for each aircraft depending on its current time error relative to its
STA and are displayed in the position that will eliminate the error.

In addition to its display on the time line, time error is also displayed below the altitude slot on the
third line of each aircraft’s data tag. The arrival time error, in seconds, is preceded either by an “E” for
early or an “L” for late. The controller may use this “Time Error” mode alone or in combination with the
Speed/Vector and Time line advisory modes to improve time control accuracy.



SIMULATION DESCRIPTION

A simulation evaluation of FAST, in conjunction with the TMA and DA, was conducted in January,
1990. Also included as one of the aircraft in the simulation was the Man-Vehicle Systems Research
Facility (MVSRF) B727-200 full mission simulator. The objectives of the simulation were to 1) deter-
mine controiler performance and runway capacity effects with and without automation tools, 2) evaluate
controller acceptance of the FAST concept, 3) evaluate pilot acceptance of flying in the automation envi-
ronment, and 4) determine the accuracy of the trajectory prediction algorithms in the TRACON.

A total of five TRACON controllers participated in the evaluation. Three controllers were from the
Denver TRACON, and the other two were recently retired from the San Francisco Bay TRACON. Each
controller participated for a period of one week. Typically, one day of training runs was necessary before
data were taken. In the case of the Denver controllers, training was considered completed in one-half
day. Data runs were started when both the experimenter and controller agreed that proficiency had
reached a high level.

For the purposes described in this paper, two types of data runs were evaluated. The first was a base-
line run in which the Center delivered traffic at the two Northern feeder gates, Drako and Keann, 7 n.mi.
in-trail and the TRACON controller had no automation tools to assist in merging and spacing traffic.
The second was a full automation run in which the Center delivered traffic to the feeder gates using the
Center automation tools, DA and TMA. In all of the data runs presented in this paper, the arrival rate
was an average of 43 aircraft per hour which provided a flow at maximum runway acceptance rate for
single runway 26L Instrument Flight Rules (IFR) operations at Denver. The arrival traffic rush lasted for
90 min, contained 70% large aircraft and 30% heavy aircraft, and distributed traffic evenly (50%/50%)
between the two arrival gates (Keann and Drako). Winds were calm. The 727 aircraft, which was piloted
by active airline crews, participated up to four times in each simulation session. All other aircraft were
“flown” by pseudo-pilots who used a keyboard to initiate changes in aircraft altitude, speed, and
heading.

At the end of a simulation week, each controller was given a questionnaire and interviewed about the

operational aspects of using the automation tools. Detailed results of these interviews, the pilot evalu-
ations, and the accuracy data for the trajectory prediction algorithm will be presented in a later report.

SIMULATION RESULTS
Simulation results presented in this paper briefly address the issues of airspace utilization, inter-
arrival spacings, capacity effects, and controller evaluations.

Airspace Utilization

One of the primary measures of an automation tool for final approach spacing is airspace utilization.
The composite ground tracks of aircraft for the two types of runs discussed earlier, baseline and



FAST+DA+TMA, are shown in figures 3 and 4. The figures superimpose the horizontal plane projec-
tions of the flight paths of all arrivals recorded during a typical simulation run. These figures show traf-
fic arriving from both the northeast (Keann) and northwest (Drako) feeder gates. The runway is located
in the southwest quadrant of these figures and is marked with an “X”. The composite ground tracks in
both of these figures resulted from the same list of input traffic covering a time range of slightly more
than one hour of capacity limited flow (40-46 aircraft per hour). They are representative of all other runs
made by the other controllers. In all runs, traffic was controlled by a single controller.

In the baseline run (fig. 3), the controller used considerably more airspace to merge and sequence
traffic. By the end of the run, traffic had backed up such that he was turning the aircraft onto the final
approach course 18 n.mi. from the runway instead of the nominal 10 n.mi. The length of the final
approach allowed at Denver without having to coordinate with other controllers is approximately
20 n.mi. from the runway. In the automation run (fig. 4), almost all aircraft were turned to final at the
nominal point between 10 and 11 n.mi. from the runway. There were a few aircraft turned to base and
final further out; however, this occurred at the advice of FAST in order to precisely alleviate potential
conflicts and to build slots for aircraft which arrived in the TRACON off schedule. Although these air-
craft were turned to base and final further from the runway, this did not cause a buildup in delay of
trailing aircraft as would be the case in a manual system. Rather it served to alleviate a buildup in delay,
and kept each trailing aircraft on its nominal and shortest turn to base and final paths. The ability of the
automation tools to precisely expand and contract the base and turn to final points provides considerable
advantages to the controller. Assisting the controllers in keeping most aircraft on a short final allows
them plenty of airspace to expand in case of an overload of traffic. In the baseline run, if an overload of
traffic were to arrive, the controller would soon be forced to use alternative procedures to control the
traffic, such as holding, sending traffic upwind then downwind (i.e., from the northeast arrival stream to
the downwind portion of the northwest arrival stream), or to shut off the Center traffic feed for several
minutes.

Interarrival Spacings

Data were also recorded on interarrival spacing of aircraft for both the baseline and automation runs.
Tables 2 and 3 present the results of all runs with capacity limited flow rate for all controllers. These
tables present the sequence of aircraft (L for large, H for heavy), mean interarrival distances at touch-
down (d), one-sigma standard deviation of distance (Gg), mean interarrival time at touchdown (t) and
one-sigma standard deviation of time (Gp). As a point of reference, the desired distance separation for the
LL and LH case is 3 n.mi., and the scheduling interval for this case was 78 sec. For the HL case, the
desired distance separation is 5 n.mi., and the scheduling interval was 125 sec. Although the controllers
were instructed to adhere strictly to the FAST advisories, no data were deleted for the few cases when
the controller missed or ignored the advisories.

Table 2 contains values measured for the baseline case which are very similar to those measured for
the manual system in reference 1. The tables show a substantial decrease in interarrival spacing in both
distance and time. The automation tool runs resulted in a decrease in mean distance separation of
0.4 n.mi. and a decrease in mean time separation of 9.8 sec for the LL and LH case. Most significant is
the decrease in the standard deviations of both distance and time separations seen in the tables. Similar
results are seen for the HL case.



Capacity Effects

Based on these results, increased capacity can be estimated. If all aircraft were “large,” the runway
capacity for this simulation based on the scheduling interval of 78 sec would be 46.2 aircraft per hour. In
the baseline runs, controllers delivered traffic at a rate of 38.8 aircraft per hour, based on the mean time
separation, For the automation runs, the arrival rate was 43.4 aircraft per hour. This implies a capacity
increase of approximately 4.6 aircraft/hour in the automation runs over the baseline runs.

An alternate method for estimating the capacity increase for the automation system is to make use of
the empirically determined standard deviations in arrival time error. In this method a time buffer is
added to the minimum separation times such that all aircraft arriving within one sigma of the scheduling
interval do not violate the minimum separation time standards (i.e., 78 sec). It can be shown that the gain
in arrival rate obtained by this method is 4.6 aircraft per hour, which is consistent with the previous
method. It should be noted that such an increase in landing rate, if realized in practice, would produce
substantial delay reductions during rush periods.

Controller Evaluations

As described earlier, the controllers were given a questionnaire and interviewed at the conclusion of
each simulation week. A full analysis of responses to the questionnaire will be presented in a future
report; however, some discussion of the general trends follows. The most important response was the
strong agreement among all controllers that workload was reduced. This reduction in workload was
manifested by a reduction of the number of speed and heading clearances issued for each aircraft, as well
as a perceived reduction in mental workload. Controllers found the time line useful for both sequence
and schedule information. They said that the turn and speed advisories were easy to see, provided suffi-
cient time to issue them, and usually coincided with what they would have done in sequencing aircraft.
The questionnaire also showed that the speed and vector advisories were their favorite feature. When the
advisories did not coincide with their own plan, they commented that the FAST generated plan was just
as good and sometimes better. They did not find that additional vectoring was necessary beyond the
FAST advisories, and they thought the tools were flexible and did not feel restricted in their own
decision making.

Several suggestions were made for improving the controller interface though none of the suggestions
pointed to basic changes or major additional requirements in the interface design. Some controllers sug-
gested a “distance-based time line” on which in-trail distance projected at the runway is displayed rather
than time. Such a method has been used in the Center DA tool and could be adapted to the TRACON.
Another suggestion was to give the controller an option to position the nominal downwind and base leg
at his or her discretion, and to incorporate certain controller preferences in the advisory logic. These and
other suggestions are being considered for incorporation into FAST.

Finally, all of the controllers cxpressed strong support for the integrated terminal automation system
concept composed o Ccnter DA and TMA and TRACON FAST. In particular, the Denver TRACON
controllers were especially enthusiastic in their support of FAST and were eager to participate in further
e e 2nd eveluatiors.



CONCLUDING REMARKS

The automation tools described in this paper and evaluated in the simulation were designed primarily
for TRACON controllers. However, the Center automation tools that were used to feed traffic into the
TRACON played an important role in the success of the TRACON tools. The Center tools were effec-
tive in delivering traffic to the feeder gates well sorted and with little time error, thus simplifying the
TRACON controller’s job with or without TRACON tools. Therefore, a total systems approach that
integrates Center and TRACON automation tools is clearly the best method to increase efficiency.

The simulation evaluation of the Final Approach Spacing Tool (FAST) demonstrated efficient
airspace utilization and reduced interarrival separations, and resulted in strong controller acceptance of
the TRACON automation tools. With FAST, controllers were consistently able to maintain final
approach intercepts of 10 to 11 n.mi. from the runway for over an hour of runway-capacity-limited
arrival traffic. Without the automation tools, final approach intercepts were expanded to 18 to 20 n.mi.
In addition, the mean interarrival separations were reduced by 0.4 n.mi. or 9 sec. This reduction in sepa-
ration translates to an increase in landing rate of 4.6 aircraft per hour for a single runway in IFR condi-
tions. Finally, all of the controllers felt there was a significant decrease in workload which was mani-
fested by a perceived reduction in clearances as well as a perceived reduction in mental workload.

Further simulation evaluations of FAST are planned in the near future. These will address such
issues as testing FAST standalone without the Center automation tools, DA and TMA, and under vary-
ing wind conditions. Ultimately, however, a test of the concept at the Denver TRACON or a similar
facility must be conducted in order to establish the effectiveness of the tools with a high level of
confidence.



REFERENCES
1. Martin, D. A.; and Willett, E. M.: Development and Application of a Terminal Spacing System. Rep.
' No. NA-68-25 (RD-68-16), Federal Aviation Administration, Aug. 1968.

2. Credeur, L.; and Capron, W. R.: Simulation Evaluation of TIMER, a Time-Based, Terminal Air
Traffic, Flow Management Concept. NASA TP-2870, Feb. 1989.

3. Erzberger, H.; and Nedell, W.: Design of Automated System for Management of Arrival Traffic.
NASA TM-102201, June 1989.

4, Davis, T. J.; Erzberger, H.; and Bergeron, H.: Design of a Final Approach Spacing Tool for TRACON
Air Traffic Control. NASA TM-102229, Sept. 1989.

5. Neuman, F.; and Erzberger, H.: Analysis of Sequencing and Scheduling Methods for Arrival Traffic.
NASA TM-102795, April 1990.

6. Tobias, L.: Time Scheduling of a Mix of 4D Equipped and Unequipped Aircraft. Proceedings of 22nd
IEEE Conference on Decision and Control, San Antonio, TX, Dec. 1983, pp. 483-488.

10



Table 1. Separation Distances
Trailing Aircraft Type

= Heavy Large Light
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Table 2. Interarrival Data for Baseline Runs

Aircraft Number of d o4 t Gy
Sequence  Occurrences (n.mi.) (n.mi.) (sec) (sec)
LL and LH 83 3.8 1.0 92.8 23.9
HL 21 5.6 1.5 127.8 29.8
Table 3. Interarrival Data for Automation Runs
Aircraft Number of d od t Ot
Sequence  Occurrences (n.mi.) (n.mi.) . (sec) (sec)
LL and LH 125 34 0.7 83.0 17.0
HL 30 54 0.9 124.5 16.7
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Figure 3. Ground tracks for a baseline run.
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Figure 4. Ground tracks for an automation run.
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